Anaeromyxobacter dehalogenans 2CP-1
Names | Anaeromyxobacter dehalogenans 2CP-1 |
---|---|
Accession numbers | NC_011891 |
Background | Anaeromyxobacter dehalogenans (strain 2CP-1) is a slender Gram-negative rod-shaped spore-forming soil bacterium. It is capable of a gliding motility and it forms a spore-like structure. It was first isolated by anaerobic enrichment from a Michigan soil sample on 2-chlorophenol and acetate followed by growth of single plate-grown colonies. It is the first Myxobacterium that is found capable of anaerobic respiration, wherein it is able to grow by coupling the oxidation of both acetate or hydrogen, which is a distinguishing property of the organism from other reducing populations, to the reduction of ortho-substituted halophenols, ferric iron, nitrate, nitrite, nitrous oxide, manganese oxide, uranium (VI) and fumarate. Of interest is its unique respiratory reduction of nitrate and nitrite to ammonia which is not linked to its ability to reduce nitrous oxide to nitrogen gas. These metal-reducing microorganisms are widely distributed in the environment. Anaeromyxobacter strains have been found in undisturbed and contaminated soils and sediments, and evidence shows they also exist in acidic subsurface sediments and agricultural soils. A. dehalogenans is an important model organism that exists as both as a productive dechlorinator and metal reducer. By studying the potential interferences between the competing substrates in contaminated environments we can further understand bioremediation efforts. (adapted from PubMed 11823233 and http://microbewiki.kenyon.edu/index.php/Anaeromyxobacter_dehalogenans). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Deltaproteobacteria |
Order: | Myxococcales |
Family: | Myxococcaceae |
Genus: | Anaeromyxobacter |
Species: | dehalogenans |
Strain | 2CP-1 |
Complete | Yes |
Sequencing centre | (07-JAN-2009) US DOE Joint Genome Institute, 2800 Mitchell Drive B310, Walnut Creek, CA 94598-1698, USA (12-JAN-2009) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Stream sediment near Lansing, Michigan |
Isolation country | USA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Terrestrial |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | Sporulating |
Metabolism | NA |
Energy source | Heterotroph |
Diseases | None |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis