Rhodopseudomonas palustris TIE-1
Names | Rhodopseudomonas palustris TIE-1 |
---|---|
Accession numbers | NC_011004 |
Background | Rhodopseudomonas palustris are phototrophic, purple non-sulfur bacteria commonly found in soils and water. They fix carbon dioxide and nitrogen, produce hydrogen, and degrade diverse biomass-associated aromatic compounds under anaerobic (phototrophic) and aerobic (heterotrophic) conditions. Against the background of general metabolic versatility of the R. palustris species there is considerable strain-to-strain diversity. Strain TIE-1, a genetically tractable bacterium, was isolated from an iron-rich mat from School Street Marsh in Woods Hole, USA. It is able to couple the oxidation of ferrous iron [Fe(II)] to reductive CO(2) fixation by using light energy, a form of photosynthesis that may be very old. The final product of Fe(II) oxidation accumulates exclusively outside the cell in the form of Fe(III) precipitates. Under anaerobic conditions, TIE-1 grows photoautotrophically with Fe(II), H2, or thiosulfate as the electron donor and photoheterotrophically with a variety of organic carbon sources; it also grows chemoheterotrophically in the dark. Phototrophically grown cells contain lamellar intracytoplasmic membranes (adapted from PubMed 16085840). (HAMAP: RHOPT) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alphaproteobacteria |
Order: | Rhizobiales |
Family: | Bradyrhizobiaceae |
Genus: | Rhodopseudomonas |
Species: | palustris |
Strain | TIE-1 |
Complete | Yes |
Sequencing centre | (23-JUN-2008) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (28-MAY-2008) US DOE Joint Genome Institute, 2800 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Iron-rich mat from School Street Marsh in Woods Hole MA |
Isolation country | USA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | 25.0 |
Temperature range | Mesophilic |
Habitat | Soil |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | Singles |
Sporulation | NA |
Metabolism | Iron oxidizer |
Energy source | Photolithoautotroph |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Phenylalanine metabolism
Benzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Aminobenzoate degradation
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Carbon fixation in photosynthetic organisms
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Phenylalanine metabolism
Benzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Aminobenzoate degradation
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Carbon fixation in photosynthetic organisms
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis