Cellvibrio japonicus Ueda107
Names | Cellvibrio japonicus Ueda107 |
---|---|
Accession numbers | NC_010995 |
Background | Cellvibrio japonicus (Strain Ueda107) is an aerobic Gram-negative saprophytic soil bacterium that was isolated from Japanese soil in 1952 and named Pseudomonas fluorescens subsp. cellulosa. Recent studies however demonstrated that C. japonicus is not a member of the genus Pseudomonas but is closely related to Cellvibrio mixtus, and hence the bacterium was renamed. C. japonicus represents an excellent system for studying the mechanism of plant cell wall degradation in a Gram-negative, non-cellulosomic saprophyte. It contains the complete repertoire of enzymes (glycoside hydrolases, lyases and esterases) required to degrade plant cell-wall and storage polysaccharides. It degrades all of the major plant cell wall polysaccharides including crystalline cellulose, mannan and xylan and is able to grow on media when these polysaccharides are the sole carbon and energy source. Unlike anaerobic plant cell wall degrading organisms, the C. japonicus enzymes that target polysaccharides, which are integral to the plant cell wall, are fully secreted into the culture media and do not assembly into large multienzyme cellulosome-like complexes. Approximately one third of these putative proteins are predicted to contain often multiple non-catalytic carbohydrate binding modules (CBMs). It increases catalytic activity by reducing the substrate accessibility problem. The variation in the portfolio of CBMs appended to these hydrolytic enzymes may impact upon the carbohydrate targeting of these biocatalysts and thus influence their substrate specificity. All the predicted plant cell-wall degrading enzymes contain signal peptides and are thus extra-cytoplasmic. The genome sequence of C. japonicus reveals a remarkable similarity between the plant cell-wall degrading apparatus of C. japonicus and that of the marine bacterium Saccharophagus degradans. Plant cell-wall degrading enzymes are widely used in the biotechnology sector for the production of detergents, paper, textiles, animal and human foods, however, the most important application of these biocatalysts is in the production of renewable biofuels. Therefore, the discovery of new and more efficient plant cell-wall degrading enzymes can potentially have numerous and important biotechnology applications. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Cellvibrio |
Species: | japonicus |
Strain | Ueda107 |
Complete | Yes |
Sequencing centre | (23-JUN-2008) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (24-JAN-2008) J. Craig Venter Institute, 9712 Medical Center Dr, Rockville, MD 20850, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Field soil in Japan |
Isolation country | Japan |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | No |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Terrestrial |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | Biomass degrader Cellulose degrader |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Galactose metabolism
Fatty acid metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Starch and sucrose metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Galactose metabolism
Fatty acid metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Starch and sucrose metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis