Acinetobacter baumannii SDF
Names | Acinetobacter baumannii SDF |
---|---|
Accession numbers | NC_010395, NC_010396, NC_010398, NC_010400 |
Background | Acinetobacter baumannii is a pathogenic species commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract. Acinetobacter baumannii SDF is responsible for community-acquired infections, and is highly sensitive to antibiotics. This strain was isolated from the interior of body lice collected on homeless people living in France. Given that the louse interior is usually sterile, the presence of this strain can only be due to cryptic bacteremic episodes. Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms. Many of them cluster into a single genomic island in strain AYE as compared to strain SDF. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Moraxellaceae |
Genus: | Acinetobacter |
Species: | baumannii |
Strain | SDF |
Complete | Yes |
Sequencing centre | (04-MAR-2008) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (25-FEB-2008) Genoscope - Centre National de Sequencage : BP 191 91006 EVRY cedex - FRANCE (E-mail : seqref@genoscope.cns.fr |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Body lice collected from homeless people living in France |
Isolation country | France |
Number of replicons | 4 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | No |
Flagellar presence | No |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | 37.0 |
Temperature range | Mesophilic |
Habitat | Aquatic |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | Singles |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | Chemoheterotroph, Heterotroph |
Diseases | Nosocomial infections, nosocomial pneumonia |
Pathogenicity | Yes |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids