Pseudomonas aeruginosa PA7

Names | Pseudomonas aeruginosa PA7 |
---|---|
Accession numbers | NC_009656 |
Background | Members of the genus Pseudomonas are characterized by their ability to grow in simple media at the expense of a great variety of organic compounds. They have a strict respiratory metabolism and are motile by one or several polar flagella. They are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. They are are found in nature in a biofilm or in planktonic form. Pseudomonas aeruginosa is an important soil bacterium, with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. Human pathogenic strains usually prey on immunocompromised patients. The clinical isolate PA7, isolated in Argentina, has a particularly interesting resistance profile. This strain is highly resistant to third generation cephalosporins, monobactams and fluoroquinolones. The strain is also resistant to piperacillin, carbenicillin, levofloxacin and chloramphenicol, but sensitive to carbapenems. Preliminary sequencing of resistance-associated genes and several other genes indicate that this strain is a taxonomic outlier that differs greatly from the sequenced strains PAO1 and PA14, and practically at the limit of the definition of a species (adapted from http://msc.tigr.org/pseudomonas_aeruginosa/index.shtml). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Pseudomonas |
Species: | aeruginosa |
Strain | PA7 |
Complete | Yes |
Sequencing centre | (06-SEP-2006) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (22-JUN-2007) The Institute for Genomic Research, 9712 Medical Center Dr, Rockville, MD 20850, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | Sanger |
Isolation site | clinical isolate |
Isolation country | Argentina |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | 25.0 |
Temperature range | Mesophilic |
Habitat | Multiple |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | Singles |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | Heterotroph |
Diseases | Opportunistic infections |
Pathogenicity | Yes |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Benzoate degradation
Fluorobenzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Benzoate degradation
Fluorobenzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis