Actinobacillus succinogenes 130Z
Names | Actinobacillus succinogenes 130Z |
---|---|
Accession numbers | NC_009655 |
Background | Actinobacillus succinogenes (strain ATCC 55618 / 130Z) is a Gram-negative, facultative anaerobic, pleomorphic bacterium from the family Pasteurellaceae. It was isolated from the bovine rumen. Actinobacillus succinogenes is supposed to have a commensal role in producing organic acids that are used as an energy source by the cow. One of the major end products of its fermentative metabolism is succinate. Succinate has many industrial fine chemical uses. It is used as a flavor and formulating ingredient in food processing, a pharmaceutical ingredient, and a surfactant. However, the greatest market potential of succinate would be its use as an intermediary commodity chemical feedstock for producing bulk chemicals, stronger-than-steel plastics, ethylene diamine disuccinate and diethyl succinate. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pasteurellales |
Family: | Pasteurellaceae |
Genus: | Actinobacillus |
Species: | succinogenes |
Strain | ATCC55618 |
Complete | Yes |
Sequencing centre | (24-JUL-2007) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (25-JUN-2007) US DOE Joint Genome Institute, 2800 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | Sanger |
Isolation site | Bovine rumen |
Isolation country | USA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | No |
Flagellar presence | No |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | 37.0 |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Free living |
Host name | Bovine |
Cell arrangement | Chains, Pairs, Singles |
Sporulation | NA |
Metabolism | NA |
Energy source | NA |
Diseases | None |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Ascorbate and aldarate metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Nitrotoluene degradation
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Ascorbate and aldarate metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Nitrotoluene degradation
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis