Verminephrobacter eiseniae EF01-2
Names | Verminephrobacter eiseniae EF01-2 |
---|---|
Accession numbers | NC_008771, NC_008786 |
Background | This species was isolated from the common composting earthworm Eisenia foetida. Earthworm egg capsules contain high numbers of the bacterial endosymbiont, acquired by transfer from nephridia into the egg capsules. Juvenile earthworms are colonized during embryonic development within the egg capsule, and failing this are not likely to acquire the symbiont by association with colonized adults or their bedding. A function for these bacteria has not yet been ascribed. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Betaproteobacteria |
Order: | Burkholderiales |
Family: | Comamonadaceae |
Genus: | Verminephrobacter |
Species: | eiseniae |
Strain | EF01-2 |
Complete | Yes |
Sequencing centre | (10-JAN-2007) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (21-DEC-2006) US DOE Joint Genome Institute, 2800 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | Sanger |
Isolation site | Kidney of the earthworm Eisenia foetida |
Isolation country | USA |
Number of replicons | 2 |
Gram staining properties | Negative |
Shape | NA |
Mobility | NA |
Flagellar presence | NA |
Number of membranes | 2 |
Oxygen requirements | NA |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Symbiotic |
Host name | Eisenia foetida |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | NA |
Energy source | NA |
Diseases | None |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids
Biosynthesis of ansamycins
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
Cyanoamino acid metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids
Biosynthesis of ansamycins