Aeromonas hydrophila subsp. hydrophila ATCC 7966
Names | Aeromonas hydrophila subsp. hydrophila ATCC 7966 |
---|---|
Accession numbers | NC_008570 |
Background | Aeromonas spp. are ubiquitous bacteria found in diverse aquatic environments worldwide, such as bottled water, chlorinated water, well water and heavily polluted waters. Aeromonas hydrophila survives easily in waters polluted by feces and seems resistant to various disinfectants, insecticides and chemicals. High numbers of Aeromonas spp. were recorded in floodwater samples in New Orleans following hurricane Katrina and they were the most common cause of skin and soft tissue infections among the survivors of the 2004 tsunami in Thailand. Aeromonas spp. cause infections in invertebrate and vertebrate such as frogs, birds and domestic animals. Infection in various fish species can result in hemorrhagic disease and furunculosis. Although Aeromonas was originally considered an opportunistic pathogen in immunocompromised humans, increasing cases of intestinal and extraintestinal disease suggest that it is an emerging human pathogen irrespective of the host's immune system. This organism has been included in the Contaminant Candidate List by the Environmental Protection Agency. Aeromonas hydrophila subsp. hydrophila (strain ATCC 7966 / NCIB 9240) was originally isolated from "a tin of milk with a fishy odor". Its genome is comprised of a single circular 4.74 Mb-chromosome. No transposase, resolvase or insertion sequence element was found in the genome. A type II secretion system and genes homologs to the vas genes proposed to encode a prototypic type VI secretion system were identified but a type III secretion system is surprisingly absent. The genes for the polar flagellum are found in four main clusters. It seems well-equipped to counter an attack of antibacterial factors as beta-lactamases, chloramphenicol acetyltransferases and other proteins that could confer resistance to bicyclomicin, fosmidomycin and aminoglycosides are present. A peptide intake transport system may play a role in resistance to antimicrobial peptides and drug efflux transporters may confer further resistance to other classes of antibiotics and toxins. A four-gene arsenical resistance operon that may pump arsenite or antimonite out of the cell has been found. Numerous amino acid and peptide transporters and relatively few sugar uptake systems are present. Both Sec and Tat secretion systems have been identified. Complete multistep pathways for synthesizing all amino acids are predicted. A selenocysteine incorporation system, selABC, is present although only a single selenoprotein, the alpha subunit of format dehydrogenase, is predicted. A. hydrophila possesses a polyhydroxyalkanoic acid storage granule system for nitrogen limitation-induced storage and a glycogen system for carbohydrate storage and mobilization. Many chitin-degrading enzymes have been predicted in addition to the characterized extracellular chitinase Chi192 and chitobiase. (HAMAP: AERHH) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Aeromonadales |
Family: | Aeromonadaceae |
Genus: | Aeromonas |
Species: | hydrophila |
Strain | ATCC 7966 |
Complete | Yes |
Sequencing centre | (06-SEP-2006) The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA (08-NOV-2006) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Canned milk from the United States |
Isolation country | USA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | 22.0 |
Temperature range | Mesophilic |
Habitat | Multiple |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | Chains, Pairs, Singles |
Sporulation | NA |
Metabolism | NA |
Energy source | Heterotroph |
Diseases | Gastroenteritis, septicemia, and others |
Pathogenicity | NA |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fructose and mannose metabolism
Galactose metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Glycerolipid metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fructose and mannose metabolism
Galactose metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Glycerolipid metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis