Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293

Names | Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 |
---|---|
Accession numbers | NC_008496, NC_008531 |
Background | Leuconostoc species are epiphytic bacteria that are wide spread in the natural environment and play an important role in several industrial and food fermentations. Leuconostoc mesenteroides is a facultative anaerobe requiring complex growth factors and amino acids. It is asporogenous and non-motile. Most strains in liquid culture appear as cocci, however, cells grown in glucose or on solid media may have an elongated or rod shaped morphology. A variety of lactic acid bacteria (LAB), including Leuconostoc species are commonly found on crop plants. L. mesenteroides is perhaps the most predominant LAB species found on fruits and vegetables and is responsible for initiating the sauerkraut and other vegetable fermentations. L. mesenteroides starter cultures also used in some dairy and bread dough. Under microaerophilic conditions, a heterolactic fermentation is carried out. Glucose and other hexose sugars are converted to equimolar amount of D-lactate, ethanol and CO2 via a combination of the hexose monophosphate and pentose phosphate. Other metabolic pathways include conversion of citrate to diacetyl and acetoin and the production of dextrans and levan from sucrose. Commercial production dextrans and levans by L. mesenteroides, for use in the biochemical and pharmaceutical industry, has been carried out for more than 50 years. Dextrans are used in the manufacture of blood plasma extenders, heparin substitutes for anticoagulant therapy, cosmetics, and other products. Another use of dextrans is the manufacture of Sephadex gels or beads, which are widely used for industrial and laboratory protein separations. Thus L. mesenteroides has significant roles in both industrial and food fermentations. Interestingly the first observation of the production of polysaccharide "slime" from sugar, dates to the earliest days of the science of microbiology; Pasteur (1861) attributed this activity to small cocci, presumably Leuconostoc species. Viscous polysaccharides produced by L. mesenteroides are widely recognized as causing product losses and processing problems in the production of sucrose from sugar cane and sugar beets (adapted from http://genome.jgi-psf.org/finished_microbes/leume/leume.home.html). (HAMAP: LEUMM) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Firmicutes |
Class: | Bacilli |
Order: | Lactobacillales |
Family: | Leuconostocaceae |
Genus: | Leuconostoc |
Species: | mesenteroides |
Strain | ATCC 8293 |
Complete | Yes |
Sequencing centre | (22-MAY-2006) US DOE Joint Genome Institute, 2800 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA (24-OCT-2006) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | fermenting olives |
Isolation country | USA |
Number of replicons | 2 |
Gram staining properties | Positive |
Shape | Cocci |
Mobility | No |
Flagellar presence | No |
Number of membranes | 1 |
Oxygen requirements | Facultative |
Optimal temperature | 20.0 |
Temperature range | Mesophilic |
Habitat | Multiple |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | Chains, Pairs, Singles |
Sporulation | NA |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Pantothenate and CoA biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Pantothenate and CoA biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis