Pseudomonas aeruginosa PAO1

Names | Pseudomonas aeruginosa PAO1 |
---|---|
Accession numbers | NC_002516 |
Background | Pseudomonas aeruginosa are motile, mesophilic, Gram-negative rod bacterium that are noted for their environmental versatility. P. aeruginosa is increasingly recognised as a nosocomial pathogen, targetting immunocompromised individuals, cancer and burn victims, and individuals with in-dwelling catheters or using respirators. It is also the leading cause in mortality and morbidity for cystic fibrosis patients.Unlike many environmental bacteria, P. aeruginosa has the ability to adapt to and thrive in many ecological niches, from water and soil to plant and animal tissues. The bacterium is capable of utilising a wide range of organic compounds as food sources, thus giving it an exceptional ability to colonise where nutrients are limited.P. aeruginosa can produce a number of toxic proteins which not only cause extensive tissue damage, but also interfere with the human immune system's defense mechanisms. These proteins range from potent toxins that enter and kill host cells at or near the site of colonisation to degradative enzymes that permanently disrupt the cell membranes and connective tissues in various organs.(From http://www.ebi.ac.uk/2can/genomes/bacteria.html) (BacMap) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Pseudomonas |
Species: | aeruginosa |
Strain | PAO1 |
Complete | Yes |
Sequencing centre | (02-OCT-2008) Department of Molecular Biology and Biochemisry, Simon Fraser University, 8888 University Dr., Burnaby, (04-FEB-2003) Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr., (05-JUL-2006) Department of Molecular Biology and Biochemisry, Simon Fraser University, 8888 University Dr., Burnaby, (06-OCT-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (08-SEP-2010) Department of Molecular Biology and Biochemisry, Simon Fraser University, 8888 University Dr., Burnaby, (16-MAY-2000) Department of Medicine and Genetics, University of Washington Genome Center, University Of Washington, |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | human infected wound |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | 25.0 |
Temperature range | Mesophilic |
Habitat | Multiple |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | Singles |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | Heterotroph |
Diseases | Opportunistic infections |
Pathogenicity | NA |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Benzoate degradation
Bisphenol degradation
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Benzoate degradation
Bisphenol degradation
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis