Geobacter metallireducens GS-15

Names | Geobacter metallireducens GS-15 |
---|---|
Accession numbers | NC_007515, NC_007517 |
Background | Geobacter metallireducens (strain GS-15 / ATCC 53774 / DSM 7210) was isolated in the Potomac river just downstream from Washington D.C. in 1987. It is able to gain energy through the dissimilatory reduction of iron, manganese, uranium and other metals. In addition, G. metallireducens can oxidize several short chain fatty acids, alcohols and monoaromatic compounds including toluene and phenol with iron as the sole electron acceptor. Therefore, it is a possible agent for bioremediation. Geobacter metallireducens specifically expresses flagella and pili, only when grown on insoluble Fe(III) or Mn(IV) oxide, and is chemotactic towards Fe(II) and Mn(II) under these conditions. These results suggest that it senses when soluble electron acceptors are depleted and then synthesizes the appropriate appendages to search for, and establish contact with, insoluble Fe(III) or Mn(IV) oxide. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Deltaproteobacteria |
Order: | Desulfuromonadales |
Family: | Geobacteraceae |
Genus: | Geobacter |
Species: | metallireducens |
Strain | GS-15 |
Complete | Yes |
Sequencing centre | (11-OCT-2005) US DOE Joint Genome Institute, 2400 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA (28-OCT-2005) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Potomac river downstream of Washington DC in 1987 |
Isolation country | USA |
Number of replicons | 2 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Anaerobic |
Optimal temperature | 30.0 |
Temperature range | Mesophilic |
Habitat | Aquatic |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | Singles |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | Chemolithotroph |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis
NCBI Genomes
NC_007515NC_007517