Ralstonia eutropha JMP134
Names | Ralstonia eutropha JMP134 |
---|---|
Accession numbers | NC_007336, NC_007337, NC_007347, NC_007348 |
Background | Ralstonia eutropha strain JMP134. This organism is found in both soil and water and has great potential for use in bioremediation as it is capable of degrading a large list of pollutants including chlorinated aromatic compounds. The bacterium can utilize hydrogen, carbon dioxide, as well as organic compounds for growth and is a model organism for hydrogen oxidation as it can grow on hydrogen as the sole energy source. It was originally isolated due to its ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid, which is due to the degradative functions being encoded on a plasmid (pJP4). (NCBI BioProject: bp_list[1]) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Betaproteobacteria |
Order: | Burkholderiales |
Family: | Burkholderiaceae |
Genus: | Cupriavidus |
Species: | pinatubonensis |
Strain | JMP134 |
Complete | Yes |
Sequencing centre | (05-AUG-2005) US DOE Joint Genome Institute, 2800 Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA (18-AUG-2005) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Sludge |
Isolation country | NA |
Number of replicons | 4 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | NA |
Number of membranes | NA |
Oxygen requirements | Facultative |
Optimal temperature | 30.0 |
Temperature range | Mesophilic |
Habitat | Multiple |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | Hydrogen oxidizer |
Energy source | Chemoautotroph, Heterotroph |
Diseases | NA |
Pathogenicity | NA |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Phenylalanine metabolism
Chlorocyclohexane and chlorobenzene degradation
Benzoate degradation
Fluorobenzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Naphthalene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Ethylbenzene degradation
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Carbon fixation in photosynthetic organisms
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Tyrosine metabolism
Phenylalanine metabolism
Chlorocyclohexane and chlorobenzene degradation
Benzoate degradation
Fluorobenzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Naphthalene degradation
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Ethylbenzene degradation
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Carbon fixation in photosynthetic organisms
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Biosynthesis of unsaturated fatty acids