Salmonella enterica subsp. enterica serovar Choleraesuis str.

Names | Salmonella enterica subsp. enterica serovar Choleraesuis str. |
---|---|
Accession numbers | NC_006855, NC_006856, NC_006905 |
Background | Salmonella enterica subsp. enterica serovar Choleraesuis strain SC-B67. This organism is an extremely invasive serovar that is increasingly becoming resistant to multiple antibiotics such as fluoroquinolones, which severly inhibits the treatment of systemic infections caused by this organism. This strain was isolated from a 58-year old man with sepsis and has been shown to be resistant to ciprofloxacin and ceftriaxone. Mutations in the gyrase and topoisomerase genes appear to be the cause of the ciprofloxacin resistance while the presence of an ampC gene on a transmissable plasmid was responsible for ceftriaxone resistance. This organism also causes severe disease (swine paratyphoid) in pigs. (NCBI BioProject: bp_list[1]) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Enterobacteriales |
Family: | Enterobacteriaceae |
Genus: | Salmonella |
Species: | enterica |
Strain | SC-B67 |
Complete | Yes |
Sequencing centre | (03-SEP-2004) Chang Gung Genomic Medical Center, No. 5, Fu-Shing St., Kweishan, Taoyuan 333, Taiwan (04-APR-2005) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | 1940s by Lilleengen |
Isolation country | NA |
Number of replicons | 3 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | NA |
Number of membranes | NA |
Oxygen requirements | Facultative |
Optimal temperature | 37.0 |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | Pairs, Singles |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | Chemoorganotroph |
Diseases | Salmonellosis and swine paratyphoid |
Pathogenicity | Yes |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Galactose metabolism
Ascorbate and aldarate metabolism
Fatty acid metabolism
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Glycerolipid metabolism
Glycerophospholipid metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Galactose metabolism
Ascorbate and aldarate metabolism
Fatty acid metabolism
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Glycerolipid metabolism
Glycerophospholipid metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis