Burkholderia sp. JV3
Names | Burkholderia sp. JV3 |
---|---|
Accession numbers | NC_015947 |
Background | The Burkholderia cepacia complex (Bcc) comprises at least nine closely related species which can be correctly identified only by polyphasic taxonomic approaches. Members of the complex are among the most metabolically versatile microorganisms known as they grow on more than 200 organic compounds, fix N2 and carry multiple antibiotic resistances. They are involved in important processes such as biodegradation of pollutants, biocontrol of root diseases but some also cause disease in plants, animals and humans. Bcc strains are isolated from very different habitats, including soil, rhizospheres, streams and infected plants, animals and human tissues, especially lungs of cystic fibrosis (CF) patients. Bcc strains have large and plastic genomes comprised of multiple (2 to 4) replicons, which is thought to give them their ecological versatility. Burkholderia sp. (strain 383) was isolated in 1958 from a forest soil in Trinidad and was one the original strains in the famous Stanier (1966) study of pseudomonads where it was described as Pseudomonas multivorans. Information as of 2004 suggests that this strain is not a member of any of the nine Bcc species, and is probably a new species. However, among the described species, it appears most closely related to B. cepacia (adapted from http://genome.jgi-psf.org/bur94/bur94.home.html). (HAMAP: BURS3) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Betaproteobacteria |
Order: | Burkholderiales |
Family: | Burkholderiaceae |
Genus: | Burkholderia |
Species: | JV3 |
Strain | JV3 |
Complete | Yes |
Sequencing centre | NA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | 454-GS-FLX-Titanium, Illumina GAii |
Isolation site | NA |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Ascorbate and aldarate metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Methane metabolism
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Ascorbate and aldarate metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Fluorobenzoate degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Starch and sucrose metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Toluene degradation
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Nitrotoluene degradation
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Methane metabolism
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis