Polymorphum gilvum SL003B-26A1
Names | Polymorphum gilvum SL003B-26A1 |
---|---|
Accession numbers | NC_015258, NC_015259 |
Background | Polymorphum gilvum SL003B-26A1 is a type strain of a newly published novel species in the novel genus Polymorphum. It was isolated from a crude oil-polluted saline soil in Shengli Oilfield, China and could use the crude oil as the sole carbon source. Oil pollution has become a global issue because of its severe ecological impact and destruction. Bioremediation is proved to be an effective process to restore the oil polluted environments. The complete genome sequence of Polymorphum gilvum SL003B-26A1 provides new strategies for bioremediation of oil contaminated environment. (NCBI BioProject: bp_list[1]) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alphaproteobacteria |
Order: | NA |
Family: | NA |
Genus: | NA |
Species: | gilvum |
Strain | SL003B-26A1 |
Complete | Yes |
Sequencing centre | (02-MAR-2011) Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 (21-MAR-2011) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | crude oil-polluted saline soil in Shengli Oilfield, China |
Isolation country | China |
Number of replicons | 2 |
Gram staining properties | Negative |
Shape | NA |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | NA |
Optimal temperature | NA |
Temperature range | NA |
Habitat | NA |
Biotic relationship | NA |
Host name | NA |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine metabolism
Benzoate degradation
Tryptophan metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
beta-Alanine metabolism
Taurine and hypotaurine metabolism
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Styrene degradation
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis