Bacteroides helcogenes P 36-108
Names | Bacteroides helcogenes P 36-108 |
---|---|
Accession numbers | NC_014933 |
Background | This group of microbes constitute the most abundant members of the intestinal microflora of mammals. Typically they are symbionts, but they can become opportunistic pathogens in the peritoneal (intra-abdominal) cavity. This organism produces many extracellular enzymes which assist in the breakdown of complex plant polysaccharides such as cellulose and hemicellulose and host-derived polysaccharides such as mucopolysaccharides. Bacteroides helcogenes (strain ATCC 35417 / DSM 20613 / JCM 6297 / P 36-108) is an anaerobic Gram-negative bacterium isolated from abscesses in pigs. (Adapted from: http://www.ncbi.nlm.nih.gov/genomeprj/41913). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Bacteroidetes |
Class: | Bacteroidia |
Order: | Bacteroidales |
Family: | Bacteroidaceae |
Genus: | Bacteroides |
Species: | helcogenes |
Strain | P 36-108 |
Complete | Yes |
Sequencing centre | (20-JAN-2011) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (22-NOV-2010) US DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | Illumina GAii, 454-GS-FLX-Titanium |
Isolation site | Pig faeces |
Isolation country | Japan |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | No |
Flagellar presence | No |
Number of membranes | 2 |
Oxygen requirements | Anaerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Free living |
Host name | Sus scrofa |
Cell arrangement | NA |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | Yes |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis