Rhodomicrobium vannielii ATCC 17100
Names | Rhodomicrobium vannielii ATCC 17100 |
---|---|
Accession numbers | NC_014664 |
Background | Rhodomicrobium vannielii is a purple non-sulfur bacterium isolated in 1949, also known as NCIMB 10020. It is a budding, prosthecate bacterium that is photosynthetic under anaerobic conditions. It is able to grow with ferrous iron as electron donor, although this does not support growth over a long time. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alphaproteobacteria |
Order: | Rhizobiales |
Family: | Hyphomicrobiaceae |
Genus: | Rhodomicrobium |
Species: | vannielii |
Strain | ATCC 17100 |
Complete | Yes |
Sequencing centre | (12-NOV-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (27-OCT-2010) US DOE Joint Genome Institute, 2800 Mitchell Drive B310, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | NA |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | NA |
Shape | NA |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Anaerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | NA |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | Nitrogen fixation |
Energy source | Photoheterotroph |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Carotenoid biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Carotenoid biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis