Bacillus atrophaeus 1942
Names | Bacillus atrophaeus 1942 |
---|---|
Accession numbers | NC_014639 |
Background | Bacillus atrophaeus 1942.This project will compare modern type strains (e.g. ATCC 9372), strains currently in use within the biodefense community to archival strains of B. atrophaeus to trace the microevolution of B. atrophaeus during more than 70 years of development and use. In addition, this project compares B. atrophaeus subsp. globigii strains to the more distantly related B. atrophaeus subsp. atrophaeus strains. (NCBI BioProject: bp_list[1]) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Firmicutes |
Class: | Bacilli |
Order: | Bacillales |
Family: | Bacillaceae |
Genus: | Bacillus |
Species: | atrophaeus |
Strain | 1942 |
Complete | Yes |
Sequencing centre | (02-NOV-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (13-SEP-2010) Genomics Integrated Product Team, US Army Edgewood Chemical Biological Center, 5183 Blackhawk Rd, Aberdeen |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | 454-GS-FLX |
Isolation site | NA |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | Positive |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 1 |
Oxygen requirements | Aerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Soil |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | Sporulating |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | NA |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Galactose metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Galactose metabolism
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Starch and sucrose metabolism
Amino sugar and nucleotide sugar metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Nitrogen metabolism
Sulfur metabolism
Aminoacyl-tRNA biosynthesis