Bifidobacterium bifidum S17
Names | Bifidobacterium bifidum S17 |
---|---|
Accession numbers | NC_014616 |
Background | Bifidobacteria represent an important group of the intestinal microbiota of humans and are believed to be promising candidates for pharmaceutical applications and functional food products due to their ability to exclude intestinal pathogens, strengthen the intestinal barrier, and/or modulate the immune response in the intestine. Bifidobacterium bifidum (strain S17) is a Gram-positive bacterium isolated from feces of a breast-fed infant. It is shown to strongly adhere to intestinal epithelial cells and has potent anti-inflammatory activity in vitro and in vivo. (Adapted from PMID: 21037011). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Actinobacteria |
Class: | Actinobacteria |
Order: | Bifidobacteriales |
Family: | Bifidobacteriaceae |
Genus: | Bifidobacterium |
Species: | bifidum |
Strain | S17 |
Complete | Yes |
Sequencing centre | (10-SEP-2010) Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm (22-OCT-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | 454-GS-FLX |
Isolation site | faeces of a breast-fed infant |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | Positive |
Shape | Bacilli |
Mobility | No |
Flagellar presence | No |
Number of membranes | 1 |
Oxygen requirements | Anaerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | HostAssociated |
Biotic relationship | Free living |
Host name | Homo sapiens |
Cell arrangement | NA |
Sporulation | Nonsporulating |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Folate biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Galactose metabolism
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Peptidoglycan biosynthesis
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Folate biosynthesis
Terpenoid backbone biosynthesis
Aminoacyl-tRNA biosynthesis