Brevundimonas subvibrioides ATCC 15264
Names | Brevundimonas subvibrioides ATCC 15264 |
---|---|
Accession numbers | NC_014375 |
Background | A non-budding, aquatic prosthecate bacteria, reproduction results in two cells that are morphologically and behaviourally different from each other. One is non-motile, sessile by virtue of adhesive material and prosthecate, possessing at least one elongated, cylindrical appendage (a prostheca) that is an outgrowth of the cell envelope, including the outer membrane, the peptidoglycan layer and the cell membrane. The other is flagellated, bearing one polar flagellum, by which it is motile. The stalks synthesized by some Alphaproteobacteria take up diffuse compounds from water sources, a feature that could be exploited for bioremediation, specifically the uptake of toxic compounds from contaminated water sources. Furthermore, extracellular polysaccharides from some of the stalked bacteria sequester metals, a feature that could be used to remediate environments affected by metal toxicity. Strain ATCC 15264, the type strain for this species, was isolated from pond water in 1964 (adapted from PMID 10425763 and http://genome.jgi-psf.org/bresu/bresu.home.html). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alphaproteobacteria |
Order: | Caulobacterales |
Family: | Caulobacteraceae |
Genus: | Brevundimonas |
Species: | subvibrioides |
Strain | ATCC 15264 |
Complete | Yes |
Sequencing centre | (06-AUG-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA (16-JUL-2010) US DOE Joint Genome Institute, 2800 Mitchell Drive B310, Walnut Creek, CA 94598-1698, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | 454, Illumina |
Isolation site | pond water |
Isolation country | USA |
Number of replicons | 1 |
Gram staining properties | NA |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Fresh water |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | NA |
Metabolism | NA |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Carotenoid biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid metabolism
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Arginine and proline metabolism
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Carotenoid biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis