Caulobacter segnis ATCC 21756
Names | Caulobacter segnis ATCC 21756 |
---|---|
Accession numbers | NC_014100 |
Background | Caulobacter segnis strain ATCC 21756 is a prostheca-less bacterium belonging to the genus Caulobacter; it was isolated from soil although its habitat is considered to be fresh-water. The absence of a stalk in this genus makes this an interesting bacterium to study. (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alphaproteobacteria |
Order: | Caulobacterales |
Family: | Caulobacteraceae |
Genus: | Caulobacter |
Species: | segnis |
Strain | ATCC 21756 |
Complete | Yes |
Sequencing centre | (12-APR-2010) US DOE Joint Genome Institute, 2800 Mitchell Drive B310, Walnut Creek, CA 94598-1698, USA (30-APR-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Soil |
Isolation country | NA |
Number of replicons | 1 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | Yes |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Aerobic |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Fresh water |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | Singles |
Sporulation | NA |
Metabolism | Chlorophenol degrading |
Energy source | NA |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid biosynthesis
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Fatty acid biosynthesis
Synthesis and degradation of ketone bodies
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Cysteine and methionine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Glutathione metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
Chloroalkane and chloroalkene degradation
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Terpenoid backbone biosynthesis
Sulfur metabolism
Caprolactam degradation
Aminoacyl-tRNA biosynthesis