Allochromatium vinosum DSM 180
Names | Allochromatium vinosum DSM 180 |
---|---|
Accession numbers | NC_013851, NC_013852, NC_013862 |
Background | An environmentally abundant anoxygenic purple sulfur bacterium occurring not only in pelagic communities but also in littoral sediments like sandy beaches, salt marches and intertidal mud flats; this strain was isolated from ditch water. It is anoxygenically photosynthetic, and depends on reduced inorganic sulfur compounds originating from anaerobic degradation of organic carbon and concomitant sulfide production by sulfate- and sulfur-reducing bacteria. The reducing equivalents in sulfide therefore ultimately stem from carbon already fixed by oxygenic photosynthesis and capture of light energy by anoxygenic photosynthesis compensates for the loss of organic carbon in the anaerobic food chain. A. vinosum store sulfur globules inside of the cells when oxidizing sulfide or thiosulfate. They have this trait in common with a large number of environmentally important chemotrophic sulfur oxidizers like Beggiatoa and with sulfur-oxdizing bacterial symbionts of marine animals like Riftia pachyptila. On a biochemical level, oxidative sulfur metabolism of A. vinosum is among the best studied of all bacteria and the organism therefore already serves as a model for sulfur-storing bacteria. Purple sulfur bacteria fix carbon along the Calvin cycle. Dense accumulations of phototropic sulfur bacteria can feed organic carbon (which would otherwise be lost) into the carbon cycle of toxic water or sediment layers. The role of purple sulfur bacteria in these globally important processes has so far been largely underestimated and not been well studied (adapted from http://genome.jgi-psf.org/allvi/allvi.home.html). (EBI Integr8) |
Taxonomy | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Chromatiales |
Family: | Chromatiaceae |
Genus: | Allochromatium |
Species: | vinosum |
Strain | DSM 180 |
Complete | Yes |
Sequencing centre | (01-FEB-2010) US DOE Joint Genome Institute, 2800 Mitchell Drive B310, Walnut Creek, CA 94598-1698, USA (17-FEB-2010) National Center for Biotechnology Information, NIH, Bethesda, MD 20894, USA |
Sequencing quality | Level 6: Finished |
Sequencing depth | NA |
Sequencing method | NA |
Isolation site | Ditch water |
Isolation country | NA |
Number of replicons | 3 |
Gram staining properties | Negative |
Shape | Bacilli |
Mobility | No |
Flagellar presence | Yes |
Number of membranes | 2 |
Oxygen requirements | Facultative |
Optimal temperature | NA |
Temperature range | Mesophilic |
Habitat | Aquatic |
Biotic relationship | Free living |
Host name | NA |
Cell arrangement | NA |
Sporulation | Nonsporulating |
Metabolism | Sulfur oxidizer |
Energy source | Phototroph |
Diseases | NA |
Pathogenicity | No |
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Ubiquinone and other terpenoid-quinone biosynthesis
Purine metabolism
Pyrimidine metabolism
Alanine, aspartate and glutamate metabolism
Glycine, serine and threonine metabolism
Valine, leucine and isoleucine biosynthesis
Lysine biosynthesis
Histidine metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis
Selenocompound metabolism
D-Glutamine and D-glutamate metabolism
D-Arginine and D-ornithine metabolism
D-Alanine metabolism
Streptomycin biosynthesis
Lipopolysaccharide biosynthesis
Peptidoglycan biosynthesis
Pyruvate metabolism
C5-Branched dibasic acid metabolism
One carbon pool by folate
Thiamine metabolism
Riboflavin metabolism
Vitamin B6 metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Biotin metabolism
Lipoic acid metabolism
Folate biosynthesis
Porphyrin and chlorophyll metabolism
Terpenoid backbone biosynthesis
Sulfur metabolism
Aminoacyl-tRNA biosynthesis